If it's not what You are looking for type in the equation solver your own equation and let us solve it.
32t-16t^2+13=0
a = -16; b = 32; c = +13;
Δ = b2-4ac
Δ = 322-4·(-16)·13
Δ = 1856
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1856}=\sqrt{64*29}=\sqrt{64}*\sqrt{29}=8\sqrt{29}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-8\sqrt{29}}{2*-16}=\frac{-32-8\sqrt{29}}{-32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+8\sqrt{29}}{2*-16}=\frac{-32+8\sqrt{29}}{-32} $
| 7÷x+4=42÷12 | | -4=3-7u | | 5x/4-x-1/2=x-1/3 | | 6u+8=-46 | | -78=-6(y+7) | | 1-9v=-71 | | x-1.8x=13.92 | | 14-(4v+4)=-4v-10 | | (-45=y)/7=-5 | | (x-7)/(x-8)=1 | | |x/5|-9=-8 | | 4n+20=5n+34 | | x=15–3 | | 22=v/5-3 | | -2/3x+9=4/3-3 | | 9(u+4)=-2u+25 | | -63=7g-15 | | 4(m=9)=-2(m-5)+2 | | 7x+3/2-(x-x-2/3)=15 | | 16x(x-3)-4(x-3)=0 | | 0.625x+664=18.56 | | (6+x)(1-X)=0 | | 5.25+1/6b=11.25 | | 5p+7-5p=-7(p-3 | | 12(5+2x)=5x-(2-4x) | | 2(x-1)-7x=18–5(x+4) | | 4s^+9=12s | | 16x+22x-1=231 | | x^2+0.1x=9*10^-7 | | a(3a+16)=-16 | | .3x-5=7 | | 5-3x=5x-11=180 |